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Abstract

Since the cognitive revolution, psychologists have developed formal theories of cognition by
thinking about the mind as a computer. However, this metaphor is typically applied to individual
minds. Humans rarely think alone; compared to other animals, humans are curiously dependent on
stores of culturally transmitted skills and knowledge, and we are particularly good at collaborating
with others. Rather than picturing the human mind as an isolated computer, we can imagine each
mind as a node in a vast distributed system. Viewing human cognition through the lens of distributed
systems motivates new questions about how humans share computation, when it makes sense to do so,
and how we can build institutions to facilitate collaboration.

Keywords: Distributed computing; Collaboration; Cultural evolution; Social cognition; Cognitive
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Cognitive science has made progress in understanding how humans learn, plan, and act
as individuals. However, humans rarely think alone. Compared to other animals, humans
are particularly dependent on culturally transmitted skills and knowledge (Henrich, 2015;
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Sloman & Fernbach, 2018) and motivated to collaborate with others (Tomasello & Hamann,
2012; Tomasello, Melis, Tennie, Wyman, & Herrmann, 2012). Collaboration enables individ-
uals to surmount limitations on their time, cognitive resources, and experience; however, we
currently lack a formal framework to describe how humans divide cognitive labor and share
the outputs of that labor. This question poses a major challenge to cognitive science.

Since the cognitive revolution, psychologists have developed formal theories of cognition
by thinking about the mind as a computer (Gigerenzer & Goldstein, 1996; Newell & Simon,
1972). However, this metaphor is typically applied to individual minds. Constraints of time,
cognitive resources, and experience are computational limitations: constraints on the kinds of
computational problems individual minds can solve. Perhaps the computer metaphor holds
the key to understanding how people work together to take on more complex computational
problems. Rather than picturing the human mind as an isolated computer, we can imagine
each mind as a node in a vast distributed system. Viewing human cognition through this lens
motivates new questions about how humans share computation, when it makes sense to do so,
and how we can facilitate collaborations.

Computer scientists have studied distributed systems for decades, analyzing the properties
of networks of independent nodes that work together by passing messages (Fokkink, 2018;
Lynch, 1996). The Internet is one such system; when you clicked on a link to read this paper,
your computer transmitted a request that bounced across computers, allowing you to access
content hosted by other computers on the network. In the past, psychologists have used dis-
tributed systems as a metaphor for understanding collective social phenomena, such as how
collectives develop technological innovations (Smaldino & Richerson, 2013) and store and
retrieve memories (Wegner, 1995). Much as how your computer sent a request to another
computer to retrieve this paper, you may ask your coworker for the office copier code to
“retrieve” that information from their memory.

Moving forward, we propose that there is much to be gained by elaborating the connection
between humans and distributed systems. Algorithms for inference or optimization that are
designed to be run on distributed systems offer insight into how people might work together to
solve similar problems. For example, a sequential Monte Carlo method known as particle fil-
tering suggests one mechanism by which human populations might solve difficult problems of
inference through cultural accumulation. In the simplest version, each individual maintains
a single hypothesis, with the first generation sampling these hypotheses h from their prior
distribution p(h). Each individual in the next generation observes some data d and then ran-
domly chooses individuals from the prior generation until they find one who has a hypothesis
consistent with those data, and then adopts that hypothesis. With an infinite population, the
probability each individual entertains a specific hypothesis is the posterior probability p(h|d)
(Hardy, Krafft, Thompson, & Griffiths, 2022). The population as a whole thus maintains the
Bayesian solution, allowing individuals to benefit from accumulated knowledge with little
cognitive effort.

One cautionary tale that we can learn from distributed systems is that making the transition
from thinking alone to thinking together presents an enormous leap in complexity. Distributed
systems can achieve tasks that would be prohibitively expensive for a single computer to do,
but they are also more difficult to maintain—individual nodes can fail, messages can get
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lost, and information can fall out of sync between them. The central challenge of distributed
computing is not how to link computers together, but rather how to maintain harmony once
they are linked.

Similarly, sharing computation among humans can be enormously beneficial, but it can
also introduce new problems. Suppose that Natalia, Brian, Matt, Bill, and Tom decide to col-
laborate on a paper. By putting their heads together, they can split the work and write a piece
that goes beyond any individual author’s area of expertise. However, they will also need to
agree on their main points (consensus; Pease, Shostak, & Lamport, 1980), they need to avoid
editing the same section at the same time (concurrency, mutual exclusion; Bernstein & Good-
man, 1981), they need to deal with situations where one or more authors are not responding
(partitions; Gilbert & Lynch, 2002), and they may need to email (asynchronous communica-
tion) to find times to join a call (synchronous communication; Charron-Bost, Mattern, & Tel,
1996). Many of these problems have been characterized in machines and are used to design
systems that are robust to certain failures. Similarly, taking inspiration from distributed sys-
tems may provide a principled way to predict when it makes sense to think together—namely,
when the gain in computational power outweighs the costs of the problems it causes.

This example also illustrates that human-distributed computation is often enabled by
machines and cultural institutions. Without telecommunications, computer networks, online
word processors, and email services, the authors would not be able to edit the same document
simultaneously. It is therefore important to understand how cultural technologies and institu-
tions affect the dynamics of human-distributed systems (Gabora, 2013; Hutchins, 1995), and
how to best design services to enable people to work together (Maglio & Spohrer, 2008). The
last decade has revealed some of the unintended consequences of large-scale social networks
and recommendation systems, including increased polarization and the creation of “filter bub-
bles” (Pariser, 2011). Participating in a social network can allow people to make decisions
informed by social information but can also magnify biases when that information comes
from people who are themselves biased. By viewing the social network as a system that
executes an algorithm based on human decisions, we have the opportunity to ask how that
algorithm can be improved. Making a small tweak to the algorithm—making it more likely to
share decisions that are more representative of an unbiased population—removes bias magni-
fication while preserving the benefits of participating in a social network (Hardy, Thompson,
Krafft, & Griffiths, 2022).

Taking inspiration from distributed systems of machines can be a rich source of hypothe-
ses about how humans share computation; however, ultimately, we need theories of dis-
tributed computation that are tailored to the capabilities and constraints of human minds.
When extended to the natural world, the challenges that are characteristic of distributed sys-
tems are compounded by the fact that the “messages” that biological intelligences pass to one
another are constructed in social contexts. Unlike machines, humans do not share the con-
tents of their minds directly, and we do not communicate using protocols that are imposed by
a designer. Instead, humans rely on language, gesture, and other means to share their thoughts.
We can quickly develop linguistic conventions to communicate more efficiently about a task
(Fusaroli et al., 2012; McCarthy, Hawkins, Wang, Holdaway, & Fan, 2021) and rely on our
ability to reason about other minds to unpack the meaning behind other people’s messages
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(Vélez & Gweon, 2019, 2021). Further, humans can organize in various ways to achieve col-
laborative goals, creating labs, unions, and hunting parties. Understanding how humans form
social structures in response to particular problems presents a daunting challenge (Ostrom,
2009); groups may exhibit emergent characteristics—such as spontaneous subdivisions or
their own forms of collective intentionality—that were not designed by any one individual
(Goldstone & Janssen, 2005; Tollefsen, 2006). These aspects of communication and social
organization create distinctive forms of shared computation. This, then, is our puzzle: under-
standing the unique properties of human-distributed systems.
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