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With the advent of multivariate pattern analysis (MVPA) as an important analytic

approach to fMRI, new insights into the functional organization of the brain

have emerged. Several software packages have been developed to perform

MVPA analysis, but deploying them comes with the cost of adjusting data to

individual idiosyncrasies associated with each package. Here we describe PyMVPA

BIDS-App, a fast and robust pipeline based on the data organization of the

BIDS standard that performs multivariate analyses using powerful functionality of

PyMVPA. The app runs flexibly with blocked and event-related fMRI experimental

designs, is capable of performing classification aswell as representational similarity

analysis, and works both within regions of interest or on the whole brain

through searchlights. In addition, the app accepts as input both volumetric and

surface-based data. Inspections into the intermediate stages of the analyses are

available and the readability of final results are facilitated through visualizations.

The PyMVPA BIDS-App is designed to be accessible to novice users, while also

o�ering more control to experts through command-line arguments in a highly

reproducible environment.
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1. Introduction

Machine learning and multivariate approaches to fMRI data analyses provide insights

into the functional organization of the brain not possible with standard univariate analyses.

Several software packages have emerged that facilitate these approaches, but adopting them

often comes with the significant cost of writing scripts to connect each software package to

the idiosyncratic data structures of the user’s organization or lab.

The Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) was developed

as a means to circumvent these up-front technical challenges. The standard describes an

organization of files and specifications for file names, and outlines a uniformly structured

metadata that has been widely adopted in the field. The BIDS structure has the additional

advantages of being easily extended to different modalities of neurophysiological data [e.g.,

EEG (Pernet et al., 2019) and MEG (Niso et al., 2018) extensions]. This innovation has

also facilitated the development of a growing number of BIDS-Apps, portable pipelines for

common neurophysiological analyses and computational approaches. Thus, by adopting

BIDS, the neuroimaging community can reap the benefits of a common data structure,

encouraging easier usage of open-source pipelines and facilitating reproducibility.
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Here we describe the PyMVPA BIDS-App, a pipeline developed

to seamlessly integrate BIDS-compatible fMRI data with the

powerful multivariate pattern analysis (MVPA) functionality of

PyMVPA, an open-source package that makes use of machine

learning tools in Python (Hanke et al., 2009). The app

performs ROI-based as well as searchlight pattern analysis

(Kriegeskorte et al., 2006), including classification with cross-

validation performance estimation (Refaeilzadeh et al., 2009) and

representational similarity analysis (RSA) (Kriegeskorte et al.,

2008), both in volumetric space and on the surface. Statistical

testing for classification analysis has also been implemented

in the pipeline to enhance interpretability, specifically through

permutation testing. By automating the entiremultivariate analysis,

the app obviates the need for coding to read event timing and

label information, while enabling inspection into intermediate

stages of the analyses, and creates visualization of patterns in

NIfTI (volumetric) or GIfTI (surface-based) format. The PyMVPA

BIDS-App also adds functionality to PyMVPA for improved beta-

estimation in event-related designs using the least squares single

(LSS) approach (Mumford et al., 2014). The app is deployed

through a container image (Gorgolewski et al., 2017), which

makes it possible to use with Docker or Singularity (Kurtzer

et al., 2017) and allows users to deploy the app within high-

performance computing (HPC) environments without a time-

consuming installation process. The PyMVPA BIDS-App is

designed to be accessible to novice users, while also offering experts

advanced command-line arguments for more control in a highly

reproducible environment.

2. The pipeline

2.1. BIDS specification

The PyMVPA BIDS-App forms a bridge between PyMVPA,

a freely available tool for multivariate pattern analysis, and BIDS

formatted datasets. It takes advantage of BIDS standard for

organizing and describing neuroimaging and behavioral data,

which specifies a directory organization, metadata, and naming

scheme to promote accessibility in data sharing and neuroimaging

tools. Importantly, this BIDS-App requires datasets to be BIDS

compatible and also to have gone under pre-processing using

fMRIPrep (Esteban et al., 2018), another BIDS-App that applies

commonly implemented preprocessing steps and returns the

functional data aligned to standardized template spaces. fMRIPrep

outputs functional data in bothNIfTI andGIfTI formats, which will

be used by PyMVPA BIDS-App for volumetric and surface-based

analysis, respectively.

Users interact with the app through the command-line

interface, as we demonstrate in section 3 with example invocations

of both fMRIPrep and PyMVPA BIDS-App via Docker. The

pipeline described below and detailed in Figure 1 shows the most

common implementation of the PyMVPA BIDS-App. Optional

deviations are noted at various points throughout the paper,

which include running the pipeline in whole-brain searchlight

mode or within regions of interest (ROI), and classification vs.

representational similarity analysis. To maximize transparency, a

complete and detailed list of the command-line arguments has

been documented through GitHub (https://github.com/bids-apps/

PyMVPA).

2.2. Concatenation and masking the
functional scans

The PyMVPA BIDS-App prepares BIDS compatible individual

participant images for classification and RSA by concatenating

relevant functional scans, as depicted in Figure 1 under the

participant prep phase. This process is performed for volumetric

analyses using the fslmerge function from FSL suite of tools

(Jenkinson et al., 2012), which provides a set of command-line

utilities for the analysis of NIfTI images. The resulting merged

NIfTI will be saved for each subject under its output folder. For

surface-based analyses, concatenation of GIfTI files is performed

later, at the beginning of the participant test phase.

The user has the option to restrict the analysis to an ROI as

specified within a NIfTI (or GIfTI) mask file they place under a

folder created by the app and named “masks” (see Figure 1). In a

whole-brain searchlight analysis, this folder remains empty. Note

that this is the only step in the whole processing stream where the

user needs to intervene.

2.3. Labeling and classification

The PyMVPA BIDS-App uses functionality from PyMVPA to

train a classifier on labeled images and validate the classifier using

independent test data. In case of RSA, the (dis)similarity between

labeled functional data points is computed and saved into a tab-

separated values TSV. If enabled by the user through optional

settings in the command-line interface of the app, each voxel/vertex

is independently z-scored over time within each run (Pereira et al.,

2009). This normalization is encouraged as heterogeneity in feature

intensity can degrade the performance of some machine learning

algorithms (Hanke et al., 2009), although the effect might be subtle

(Misaki et al., 2010). Detrending of time-series (Mattay et al., 1996)

can also be performed by the user at this level.

As part of the BIDS specification, experimental timing

information is provided within TSV files that specify the onset and

duration of events, located within each subject’s directory. Boxcar

functions constructed from the experimental timing are convolved

with the hemodynamic response function (HRF) (Boynton et al.,

1996) to generate predicted brain responses. A fixed-effects

generalized linear model (GLM) implemented in PyMVPA uses the

predicted response to estimate the event betas for each voxel/vertex;

other predictors can also be included in the model with the user’s

intervention. An example with two conditions depicted in blue and

red is shown in Figure 1. With ordinary least squares (OLS, default)

as the fitting algorithm, betas can be estimated either per condition

per run, or per trial per condition per run. The latter approach

provides a higher number of training samples, while the former

(depicted in Figure 1) better suits block designs and minimizes

variance, although care must be taken as prolonging blocks can also

introduce additional noise (Shan et al., 2014). A trade-off between

the two should bemade by the user by considering study design and

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1233416
https://github.com/bids-apps/PyMVPA
https://github.com/bids-apps/PyMVPA
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Torabian et al. 10.3389/fnins.2023.1233416

FIGURE 1

The PyMVPA BIDS-App pipeline. Left: Participant preparation level, receives input from fMRIPrep and concatenates all functional runs of each subject

into a single file. In the case of a volumetric ROI-based analysis, the user must place a NIfTI (.nii) file specifying the region of interest (ROI) in the

“masks” folder. Right: At the participant test level, PyMVPA classifies beta estimates given by the hemodynamic response function (HRF) modeling of

experimental conditions, or finds similarities between the betas. Note that only classification of betas estimated through ordinary least squares (OLS)

is depicted here, but the app is also capable of LSS beta estimation and computing representational similarity. The results are rendered through HTML

reports together with visualized NIfTI or GIfTI patterns. The example here shows a volumetric NIfTI output file, which will also be gzip compressed

and given in .gz format.

data quality (Coutanche and Thompson-Schill, 2012; Abdulrahman

and Henson, 2016; Zeithamova et al., 2017; Stehr et al., 2023). If

fitting is performed in a least squares single (LSS) (Mumford et al.,

2014) fashion, on the other hand, estimation will occur as follows:

One single beta for the first trial and two sets (per condition per

run) of betas for all the other trials will be estimated under one

GLM. Subsequently, only the first trial’s beta estimate will be saved.

This process will be repeated for all the other trials, until they each

have a corresponding estimate.

The beta series can then be subjected to a second z-scoring,

which will be applied to beta estimates across all runs. This step

is generally recommended for RSA analysis, and for classification

would depend on the classifier type, as some SVM algorithms come

with built-in across-run z-scoring (Cortes and Vapnik, 1995).

When running the pipeline in classification mode, beta

estimates and labels are by default classified using a support vector

machine (SVM), selected because of its reasonable performance

with high-dimensional problems (Cortes and Vapnik, 1995). The

classifier splits the data into a training fold that holds n-1

runs, and a second fold with a single run left for testing. This

leave-one-run-out folding procedure can be modified through

command-line flags if the user wishes to include more runs in

the test split. For RSA analysis, the representational (dis)similarity

between all pairs of beta estimates will be computed using the

pairwise distance metric of “correlation”. Other metrics including

“Euclidean” and “Mahalanobis” can also be used as specified

through command-line arguments.

The PyMVPA BIDS-App returns an HTML report overview

of the classification/RSA performance to maximize shareability

between peers. The app also outputs spatial maps of classification

accuracy in the format of NIfTI/GIfTI patterns that can be

visualized in software packages such as FSLeyes or Neuropythy.

If the analysis is restricted to an ROI, the HTML report

will include a confusion matrix showing predictions vs. targets

together with the overall classification accuracy. The classification

patterns represent weights derived from the classifier for each

voxel/vertex. A high weight indicates a relatively significant role

in the decoding of experimental conditions, although care must be

taken when interpreting such patterns as the meaning of weights

changes from one classifier algorithm to another (Gaonkar et al.,

2015). For searchlight classification, accuracy at each voxel/vertex

represents the classifier’s performance of the sphere/disc centered

at that voxel/vertex.

3. Validation demonstrated with
sample analyses

We demonstrate the PyMVPA BIDS-App by running it on two

publicly available BIDS datasets. In our first analysis, we decode
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fMRI responses of a single subject to 8 categories of objects,

obtained from the seminal (Haxby et al., 2001) MVPA study. This

classification is implemented as an ROI-based approach restricted

to the ventral temporal (VT) cortex. Within the same ROI, we

will also illustrate the representational similarity structure of the

object categories. The second analysis investigates the expression

of two basic emotions of happiness and sadness during naturalistic

viewing of the Forrest Gump movie (https://www.studyforrest.

org/), implemented as whole-brain searchlight.

3.1. Object recognition in the ventral
temporal cortex

In 2001, Haxby et al. (2001) introduced a new quantitative

approach to evaluate the functional organization of the ventral

visual pathway in humans. By investigating representational

similarity of activation patterns, they showed that distinct

representation of a stimulus category exists in the ventral temporal

(VT) cortex not only exclusively in the region that responds

maximally to that category as the traditional model suggested, but

extending beyond even into areas that respond maximally to other

categories. Included in this study were object categories of faces,

houses, cats, bottles, scissors, shoes, chairs, and scrambled pictures.

Here, we obtain a publicly available BIDS version of the dataset

from the OpenNeuro database (ds000105) and perform 8-way

classification on the aforementioned stimulus labels. Additionally,

we obtain the representational similarity between the object

categories. Both classification and RSA analyses are performed

within a VT mask.

A total of 6 subjects are available on the OpenNeuro version of

this dataset, however subjects 1–5 have lost orientation information

in the T1-weighted image files due to a conversion issue (https://

openfmri.org/dataset-orientation-issues/), and subject 6 lacks a

high spatial resolution T1-weighted anatomical file. We, therefore,

adopt anatomical data from another source available through the

PyMVPA tutorial (http://data.pymvpa.org/datasets/tutorial_data).

This lightweight version of the dataset includes only a single

subject, Subject 1, which we use to complete this example analysis.

As the first preparatory step, the raw single-subject BIDS data

is preprocessed using fMRIPrep (see Box 1 for details) and the

functional data is registered to native space. All 12 functional

scans for the subject are then concatenated into a single NIfTI

file. Before the HRF modeling of the timeseries and performing

classification/RSA, we restrict the analysis to a VT mask obtained

from the PyMVPA tutorial database. This mask was constructed

from a univariate GLM analysis using an 8-regressor model, with

the first regressor being the contrast between stimulus blocks and

rest, and the other seven being responses to each meaningful

object category.

The result of the 8-way leave-one-run-out classification is

detailed in Figure 2, together with the representational dissimilarity

matrix (RDM). Box 1 shows invocations of PyMVPA BIDS-App

to generate these results. An overall classification accuracy of

80.21%—with chance being 12.5%—is achieved by estimating betas

per condition per run, with z-scoring performed on the betas

(features). Statistical significance is assessed using permutation

BOX 1 Invocations of both fMRIPrep andPyMVPABIDS-App for the

first sample analysis: object recognition in the VT cortex.

# fmriprep:

docker run -ti --rm \

-v [path to BIDS root]:/data \

-v [path to FreeSurfer license.txt]:/opt/

freesurfer/license.txt \

nipreps/fmriprep:21.0.1 \

/data /data/derivatives participant \

--skip_bids_validation --participant-label 1

--output-spaces func

# preparation (concatenation):

docker run -i --rm \

-v [path to BIDS root]:/data \

bids/pymvpa \

/data /data/derivatives/pymvpa participant_prep\

--participant_id 1 --task objectviewing

# test (classification):

docker run -i --rm \

-v [path to BIDS root]:/data \

bids/pymvpa \

/data /data/derivatives/pymvpa participant_test\

--participant_id 1 --task objectviewing --mask

VT --bzscore \

--conditions_to_classify bottle cat chair face

house scissors scrambledpix shoe

# test (rsa):

docker run -i --rm \

-v [path to BIDS root]:/data \

bids/pymvpa \

/data /data/derivatives/pymvpa participant_test\

--participant_id 1 --task objectviewing --mask

VT --bzscore --rsa

testing in which the condition labels are randomized, resulting

in classification performance as expected by chance. A null

distribution built from 10,000 iterations reveals the likelihood

of observing our true classification by chance to be p =

0.00009. Eliminating z-scoring results in somewhat weaker overall

classification accuracy (68.75%), z-scoring on the timeseries only

yields 75% accuracy, and z-scoring on both timeseries and beta

estimates returns a robust 78.12%. Faces and houses are predicted

with perfect precision, as expected due to their robust category-

selective responses in the fusiform face area (FFA) (Kanwisher

et al., 1997) and parahippocampal place area (PPA) (Epstein

and Kanwisher, 1998), both of which were included in the VT

mask. Categories of bottles, cats, chairs, scissors, scrambled, and

shoes are predicted with 67%, 83%, 58%, 50%, 100%, and 83%

accuracies, respectively.

The RDM in Figure 2 depicts correlation distances between

all pairs of samples from the 8 categories. For each category,

12 samples are computed that correspond to the 12 runs in the

experiment, forming a total of 8*12 rows (and columns) in the

dissimilarity matrix. Blue face and house squares at the center of

the RDM illustrate the robustness of these categories, which are

classified nearly perfectly against the other categories. Interestingly,

although the scrambled images were also distinct from the other
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FIGURE 2

Left: Confusion matrix as returned by the PyMVPA BIDS-App for the classification of 8 object categories in the ventral temporal (VT) cortex. Rows and

columns represent predicted and target categories, respectively. Each cell specifies the number of samples (out of 12) predicted as each of the 8

categories. An overall decoding performance of 80.21% (chance at 12.5%) is achieved, with all faces, houses, and scrambled pictures correctly

classified as their own categories. Cross-validation is performed in a leave-one-run-out fashion. Right: Representational Dissimilarity Matrix (RDM)

showing distance between samples of the 8 categories. For each category, 12 samples coming from 12 runs are used in the analysis. Distances are

computed as correlation distance which range from 0 (most similar) to 2 (most dissimilar) and depict robust face and house categories, matching

classification results.

categories, they do not show strong within category similarity,

suggesting that the pattern representing one scrambled picture does

not predict the pattern of activation for another scrambled picture.

Haxby et al. (2001)’s object recognition study employed a

simplified blocked experimental design as was commonly used in

many fMRI experiments. In the following analysis, we illustrate

the flexibility and performance of the PyMVPA BIDS-App using

a second dataset that involves diverse and complex sensory

representations as conveyed during naturalistic viewing.

3.2. Searchlight decoding of emotions
elicited by the movie Forrest Gump

The StudyForrest project (https://www.studyforrest.org/) seeks

to take a major step toward a better understanding of how the

brain works in real-life contexts by coupling neurophysiological

measures with extensive, detailed annotations of perceptual,

cognitive and emotional events (Labs et al., 2015) during

naturalistic viewing. Here, we use this dataset to map brain

regions with multivariate patterns that are associated with basic

emotions.

The BIDS version of this dataset is available on the OpenNeuro

database (ds000113). We specifically use the “movie” session of

the data where 15 participants watched the full 2-h audio-visual

version of the movie Forrest Gump split evenly across 8 runs. We

preprocess the data using fMRIPrep with susceptibility distortion

correction applied, as fieldmaps are missing in the movie session

(see Box 2). Functional images are normalized to the standard

MNI152NLin2009cAsym reference space.

An independent set of 9 observers (students at the Otto-

von-Guericke-University in Magdeburg, Germany, all female)

have annotated the complete movie outside the scanner. Each

of these individuals have independently identified the onset and

duration of episodes that portray emotions, semantic conflict,

body contact, etc. Annotations of emotions include the basic

attributes of arousal and valence, the identity of the movie

character expressing the emotion, explicit emotion categories

such as fear and love, and a variety of other features including

face and audio. These observations are provided through inter-

observer agreement (IOA) scores that reliably indicate the

occurrence of an emotional attribute during each period of time

(annotations). To achieve robustness in this analysis, emotional

events are only included if the IOA scores reflect an emotional

expression identified by least 5 of 9 observers. These events are

used to generate predicted brain responses for a whole-brain

searchlight analysis.

This analysis targets the basic emotions of happiness and

sadness, as these two emotional expressions exist more frequently

and more evenly distributed across the 8 runs of the movie as

compared to other emotions. Among 14 basic and non-basic (e.g.,

hope, shame) emotions annotated, happiness and sadness together

constitute 44% of all labels. We generate predicted brain responses

using the timing and duration derived from the annotations
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BOX 2 Invocations of both fMRIPrep andPyMVPABIDS-App for the

second sample analysis: searchlight decoding of emotions.

# fmriprep:

docker run -ti --rm \

-v [path to BIDS root]:/data \

-v [path to FreeSurfer license.txt]:/opt/

freesurfer/license.txt \

nipreps/fmriprep:21.0.1 \

/data /data/derivatives participant

--skip_bids_validation --participant-label

01 02 03 04 05 06 09 10 14 15 16 17 18 19 20

--ignore fieldmaps --use-syn-sdc

# preparation (concatenation):

docker run -i --rm \

-v [path to BIDS root]:/data \

bids/pymvpa \

/data /data/derivatives/pymvpa participant_prep

--participant_id 01 02 03 04 05 06 09 10 14

15 16 17 18 19 20 --session movie --task movie

# test (searchlight classification):

docker run -i --rm \

-v [path to BIDS root]:/data \

bids/pymvpa \

/data /data/derivatives/pymvpa participant_test

--participant_id 01 02 03 04 05 06 09 10 14

15 16 17 18 19 20 --session movie --task movie

--searchlight 2.0 --tzscore --bzscore \

--conditions_to_classify happiness sadness

on happiness and sadness, with betas derived from each run

independently after z-scoring of timeseries. Beta estimates per

condition (i.e., emotion) per run are z-scored then classified using a

linear SVM in a leave-one-run-out cross-validation regime for each

participant. Invocations of fMRIPrep and the PyMVPA BIDS-App

for this analysis are shown in Box 2.

Figure 3 depicts the results of the whole-brain searchlight

(spheres of radius 2) with classification accuracy for discriminating

happiness vs. sadness, averaged across all subjects. Highest

classification accuracies (max = 77.5%) are found in Brodmann

area 19, the lateral occipital temporal cortex (LOC), and primary

auditory cortex. We did not find above strong classification

in the amygdala, which is traditionally known to be involved

in processing aversive (LeDoux, 1996), and also pleasant

(Janak and Tye, 2015) stimuli.

In naturalistic viewing, emotional expressions can take many

forms and often depend on contextual elements such as the

music played with a scene. To investigate what factors elicit

the perception of the emotions of interest, we fit Generalized

Estimating Equations (GEE) with logit links to the binarized

IOA annotation scores, with happiness and sadness as dependent

variables in two separate models, and include features of audio,

face, gesture, and verbal communication as independent variables.

Random effects are included to account for the variance coming

from various characters in the movie. Note that we perform

GEE and not Generalized Linear Mixed Models (GLMM) as

specific characters are not of interest here. The results of our

modeling on happiness reveal only a significant effect of audio

(β̂ = 1.346,χ2 = 6.880, p = 0.008). The GEE model

on sadness, on the other hand, shows significant effects of

audio (β̂ = −39.509,χ2 = 13753.98, p < 2e − 16), face

(β̂ = 1.292,χ2 = 14.68, p = 0.00013), and gesture (β̂ =

−1.308,χ2 = 5.39, p = 0.0203).

The high accuracy in the LOC and auditory cortex likely

reflects the co-occurrence of emotional expression with salient

facial and gestural (Weiner and Grill-Spector, 2013) and audio

events, respectively. The LOC has also been reported in another

study on emotions in the Forrest Gump movie (Lettieri et al.,

2019), as one of the brain regions associated with ratings of

the perceived intensity of six basic emotions including happiness

and sadness. Distinct auditory patterns at a primary and not at

higher ventral/dorsal auditory levels (Hickok and Poeppel, 2007),

specifically, suggest the importance of early detection of basic

emotions. Similar to the LOC, BA 19 has also been reported in

studies of complex action observation (Molnar-Szakacs et al., 2006),

which might be involved in conveying different emotions. Further

analysis using more detailed annotations is however needed to

draw conclusion on factors that drive basic emotions, for example

by breaking gesture down to more specific action types with

different limbs.

4. Discussion

The PyMVPA BIDS-App enables fMRI researchers to perform

MVPA analyses including classification and RSA in a portable

and highly reproducible environment. By integrating PyMVPA

functionality into the BIDS standard, the app makes advanced

MVPA research feasible for novice users, while offering more

control to experts through an extensive set of command-line

arguments, and through possible modifications to the open-source

pipeline. One limitation of this work is its dependence of the

pipeline on prior data preprocessing using the fMRIPrep BIDS-

App, which provides the critical NIfTI/GIfTI images for use in

volumetric/surface-based MVPA analysis. As a docker container,

the PyMVPA BIDS-App makes the use of PyMVPA (together with

all its dependencies) as easy as running a single terminal command,

with no need to install software.

The PyMVPA BIDS-App runs in a variety of settings, including

in volumetric or surface-based mode, and within ROIs or on the

whole brain through searchlights. Furthermore, functionality that

was previously non-existent in PyMVPA, including LSS model

estimations, is now integrated into this BIDS-App version of

PyMVPA. The app has already been deployed from the Docker Hub

more than 1.4k times, and used in published work as well (e.g.,

O’Brien et al., 2022).

5. Materials and methods

5.1. fMRIPrep pre-processing of study 1

Results included in this manuscript come from preprocessing

performed using fMRIPrep 20.1.1 (Esteban et al., 2018, 2023;

RRID:SCR_016216), which is based on Nipype 1.5.0 (Gorgolewski

et al., 2011; Esteban et al., 2021; RRID:SCR_002502).
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FIGURE 3

Searchlight results classifying happiness vs. sadness. Spatial maps denote accuracies with max at 77.5% (chance = 50%). Note that analyses are

conducted in volumetric space, and then projected on the surface for visualization purposes using Neuropythy, an open-source library for

surface-based analyses that complements the interface to volumetric images provided by the NiBabel library.

5.1.1. Anatomical data preprocessing
A total of 1 T1-weighted (T1w) images were found

within the input BIDS dataset. The T1-weighted (T1w)

image was corrected for intensity non-uniformity (INU) with

N4BiasFieldCorrection (Tustison et al., 2010), distributed

with ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757) and used

as T1w-reference throughout the workflow. The T1w-reference

was then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using

OASIS30ANTs as target template. Brain tissue segmentation

of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using

fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al., 2001). Brain

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,

RRID:SCR_001847, Dale et al., 1999), and the brainmask estimated

previously was refined with a custom variation of the method to

reconcile ANTs-derived and FreeSurfer-derived segmentations

of the cortical gray-matter of Mindboggle (RRID:SCR_002438,

Klein et al., 2017). Volume-based spatial normalization to one

standard space (MNI152NLin2009cAsym) was performed through

non-linear registration with antsRegistration (ANTs 2.2.0),

using brain-extracted versions of both T1w reference and the

T1w template. The following template was selected for spatial

normalization: ICBM 152 Nonlinear Asymmetrical template version

2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:

MNI152NLin2009cAsym).

5.1.2. Functional data preprocessing
For each of the 12 BOLD runs found per subject (across all

tasks and sessions), the following preprocessing was performed.

First, a reference volume and its skull-stripped version were

generated using a custom methodology of fMRIPrep. Head-motion

parameters with respect to the BOLD reference (transformation

matrices, and six corresponding rotation and translation

parameters) are estimated before any spatiotemporal filtering

using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). Susceptibility

distortion correction (SDC) was omitted. The BOLD reference

was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration

(Greve and Fischl, 2009). Co-registration was configured with

six degrees of freedom. The BOLD time-series (including slice-

timing correction when applied) were resampled onto their

original, native space by applying the transforms to correct for

head-motion. These resampled BOLD time-series will be referred

to as preprocessed BOLD in original space, or just preprocessed

BOLD. Several confounding time-series were calculated based on

the preprocessed BOLD: framewise displacement (FD), DVARS

and three region-wise global signals. FD was computed using

two formulations following Power (absolute sum of relative

motions, Power et al., 2014) and Jenkinson (relative root mean

square displacement between affines, Jenkinson et al., 2002). FD

and DVARS are calculated for each functional run, both using

their implementations in Nipype (following the definitions by

Power et al., 2014). The three global signals are extracted within

the CSF, the WM, and the whole-brain masks. Additionally,

a set of physiological regressors were extracted to allow for

component-based noise correction (CompCor, Behzadi et al.,

2007). Principal components are estimated after high-pass filtering

the preprocessed BOLD time-series (using a discrete cosine

filter with 128s cut-off) for the two CompCor variants: temporal

(tCompCor) and anatomical (aCompCor). tCompCor components

are then calculated from the top 5% variable voxels within a mask

covering the subcortical regions. This subcortical mask is obtained

by heavily eroding the brain mask, which ensures it does not

include cortical GM regions. For aCompCor, components are

calculated within the intersection of the aforementioned mask

and the union of CSF and WM masks calculated in T1w space,

after their projection to the native space of each functional run

(using the inverse BOLD-to-T1w transformation). Components

are also calculated separately within the WM and CSF masks. For

each CompCor decomposition, the k components with the largest

singular values are retained, such that the retained components’

time series are sufficient to explain 50 percent of variance across the

nuisance mask (CSF, WM, combined, or temporal). The remaining

components are dropped from consideration. The head-motion
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estimates calculated in the correction step were also placed within

the corresponding confounds file. The confound time series derived

from head motion estimates and global signals were expanded

with the inclusion of temporal derivatives and quadratic terms for

each (Satterthwaite et al., 2013). Frames that exceeded a threshold

of 0.5 mm FD or 1.5 standardized DVARS were annotated as

motion outliers. All resamplings can be performed with a single

interpolation step by composing all the pertinent transformations

(i.e., head-motion transform matrices, susceptibility distortion

correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured

with Lanczos interpolation to minimize the smoothing effects of

other kernels (Lanczos, 1964). Non-gridded (surface) resamplings

were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2

(Abraham et al., 2014, RRID:SCR_001362), mostly within the

functional processing workflow. For more details of the pipeline,

see the section corresponding to workflows in fMRIPrep’s

documentation.

5.2. fMRIPrep pre-processing of study 2

Results included in this manuscript come from preprocessing

performed using fMRIPrep 20.1.1 (Esteban et al., 2018, 2023;

RRID:SCR_016216), which is based on Nipype 1.5.0 (Gorgolewski

et al., 2011; Esteban et al., 2021; RRID:SCR_002502).

5.2.1. Anatomical data preprocessing
A total of 1 T1-weighted (T1w) images were found

within the input BIDS dataset. The T1-weighted (T1w)

image was corrected for intensity non-uniformity (INU) with

N4BiasFieldCorrection (Tustison et al., 2010), distributed

with ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757), and used

as T1w-reference throughout the workflow. The T1w-reference

was then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using

OASIS30ANTs as target template. Brain tissue segmentation

of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using

fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al., 2001). Brain

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,

RRID:SCR_001847, Dale et al., 1999), and the brainmask estimated

previously was refined with a custom variation of the method to

reconcile ANTs-derived and FreeSurfer-derived segmentations

of the cortical gray-matter of Mindboggle (RRID:SCR_002438,

Klein et al., 2017). Volume-based spatial normalization to one

standard space (MNI152NLin2009cAsym) was performed through

non-linear registration with antsRegistration (ANTs 2.2.0),

using brain-extracted versions of both T1w reference and the

T1w template. The following template was selected for spatial

normalization: ICBM 152 Nonlinear Asymmetrical template version

2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:

MNI152NLin2009cAsym).

5.2.2. Functional data preprocessing
For each of the 8 BOLD runs found per subject (across

all tasks and sessions), the following preprocessing was

performed. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep.

Head-motion parameters with respect to the BOLD reference

(transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotemporal

filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002).

BOLD runs were slice-time corrected using 3dTshift from

AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927). A

deformation field to correct for susceptibility distortions was

estimated based on fMRIPrep’s fieldmap-less approach. The

deformation field is that resulting from co-registering the BOLD

reference to the same-subject T1w-reference with its intensity

inverted (Huntenburg, 2014; Wang et al., 2017). Registration is

performed with antsRegistration (ANTs 2.2.0), and the

process regularized by constraining deformation to be non-zero

only along the phase-encoding direction, and modulated with

an average fieldmap template (Treiber et al., 2016). Based on

the estimated susceptibility distortion, a corrected EPI (echo-

planar imaging) reference was calculated for a more accurate

co-registration with the anatomical reference. The BOLD reference

was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration

(Greve and Fischl, 2009). Co-registration was configured with

six degrees of freedom. The BOLD time-series (including slice-

timing correction when applied) were resampled onto their

original, native space by applying a single, composite transform

to correct for head-motion and susceptibility distortions. These

resampled BOLD time-series will be referred to as preprocessed

BOLD in original space, or just preprocessed BOLD. The BOLD

time-series were resampled into standard space, generating a

preprocessed BOLD run in MNI152NLin2009cAsym space. First,

a reference volume and its skull-stripped version were generated

using a custom methodology of fMRIPrep. Several confounding

time-series were calculated based on the preprocessed BOLD:

framewise displacement (FD), DVARS and three region-wise

global signals. FD was computed using two formulations following

Power (absolute sum of relative motions, Power et al., 2014)

and Jenkinson (relative root mean square displacement between

affines, Jenkinson et al., 2002). FD and DVARS are calculated

for each functional run, both using their implementations in

Nipype (following the definitions by Power et al., 2014). The

three global signals are extracted within the CSF, the WM,

and the whole-brain masks. Additionally, a set of physiological

regressors were extracted to allow for component-based noise

correction (CompCor, Behzadi et al., 2007). Principal components

are estimated after high-pass filtering the preprocessed BOLD

time-series (using a discrete cosine filter with 128s cut-off) for

the two CompCor variants: temporal (tCompCor) and anatomical

(aCompCor). tCompCor components are then calculated from

the top 5% variable voxels within a mask covering the subcortical

regions. This subcortical mask is obtained by heavily eroding the

brain mask, which ensures it does not include cortical GM regions.

For aCompCor, components are calculated within the intersection

of the aforementioned mask and the union of CSF and WM
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masks calculated in T1w space, after their projection to the native

space of each functional run (using the inverse BOLD-to-T1w

transformation). Components are also calculated separately within

the WM and CSF masks. For each CompCor decomposition,

the k components with the largest singular values are retained,

such that the retained components’ time series are sufficient to

explain 50 percent of variance across the nuisance mask (CSF, WM,

combined, or temporal). The remaining components are dropped

from consideration. The head-motion estimates calculated in

the correction step were also placed within the corresponding

confounds file. The confound time series derived from head

motion estimates and global signals were expanded with the

inclusion of temporal derivatives and quadratic terms for each

(Satterthwaite et al., 2013). Frames that exceeded a threshold

of 0.5 mm FD or 1.5 standardized DVARS were annotated as

motion outliers. All resamplings can be performed with a single

interpolation step by composing all the pertinent transformations

(i.e., head-motion transform matrices, susceptibility distortion

correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured

with Lanczos interpolation to minimize the smoothing effects of

other kernels (Lanczos, 1964). Non-gridded (surface) resamplings

were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2

(Abraham et al., 2014, RRID:SCR_001362), mostly within the

functional processing workflow. For more details of the pipeline,

see the section corresponding to workflows in fMRIPrep’s

documentation.
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